Send Moses-support mailing list submissions to
moses-support@mit.edu
To subscribe or unsubscribe via the World Wide Web, visit
http://mailman.mit.edu/mailman/listinfo/moses-support
or, via email, send a message with subject or body 'help' to
moses-support-request@mit.edu
You can reach the person managing the list at
moses-support-owner@mit.edu
When replying, please edit your Subject line so it is more specific
than "Re: Contents of Moses-support digest..."
Today's Topics:
1. Re: factored tuning time (Hieu Hoang)
----------------------------------------------------------------------
Message: 1
Date: Thu, 22 Oct 2015 12:29:51 +0100
From: Hieu Hoang <hieuhoang@gmail.com>
Subject: Re: [Moses-support] factored tuning time
To: Tomasz Gawryl <tomasz.gawryl@skrivanek.pl>
Cc: moses-support <moses-support@mit.edu>
Message-ID:
<CAEKMkbj3y3Rt+3vRnL6WMWrYMk3UQCjV_1yFLQKSY0vnSpUOpw@mail.gmail.com>
Content-Type: text/plain; charset="utf-8"
up to you. The default max iteration for mert is 25. So you may be waiting
for a month.
In your situation, I would stop it, reduce the tuning set to 2000, then
restart the tuning. It will tune in a day
Hieu Hoang
http://www.hoang.co.uk/hieu
On 22 October 2015 at 12:25, Tomasz Gawryl <tomasz.gawryl@skrivanek.pl>
wrote:
> Hi Hieu,
>
> So I?ll wait to the end and then reduce tuning file to recommended size.
>
> Thank you for your help! J
>
>
>
> Best Regards,
>
> Tomek
>
>
>
> *From:* Hieu Hoang [mailto:hieuhoang@gmail.com]
> *Sent:* Thursday, October 22, 2015 1:13 PM
> *To:* Tomasz Gawryl
> *Cc:* moses-support
> *Subject:* Re: [Moses-support] factored tuning time
>
>
>
> your moses.ini file is fine. Your tuning set is crazily large. You only
> need about 2000 sentences in most cases
>
>
> Hieu Hoang
> http://www.hoang.co.uk/hieu
>
>
>
> On 22 October 2015 at 12:09, Tomasz Gawryl <tomasz.gawryl@skrivanek.pl>
> wrote:
>
> Sure. Below is my moses.ini file.
>
>
>
> Current run: run9
>
>
>
> Tuning set contains 21552 sentences
>
> Test sets are very small, the biggest has 118 sentences.
>
>
>
> Regards,
>
> TG
>
>
>
>
>
> moses@SKR-moses:~/working/experiments/FACTORED/model$ more moses.ini.1
>
> #########################
>
> ### MOSES CONFIG FILE ###
>
> #########################
>
>
>
> # input factors
>
> [input-factors]
>
> 0
>
>
>
> # mapping steps
>
> [mapping]
>
> 0 T 0
>
>
>
> [distortion-limit]
>
> 6
>
>
>
> # feature functions
>
> [feature]
>
> UnknownWordPenalty
>
> WordPenalty
>
> PhrasePenalty
>
> PhraseDictionaryMemory name=TranslationModel0 num-features=4
> path=/home/moses/working/experiments/FACTORED/model/phrase-table.1.0-0,1
> input-factor=0 output-factor=0,1
>
> LexicalReordering name=LexicalReordering0 num-features=6
> type=wbe-msd-bidirectional-fe-allff input-factor=0 output-factor=0
> path=/home/moses/working/experiments/FACTORED/model/reordering-table.1.0-0.wbe-msd-bidirectional-fe.gz
>
> Distortion
>
> SRILM name=LM0 factor=1
> path=/home/moses/working/experiments/FACTORED/lm/ACROSS=pos.lm.1 order=7
>
>
>
> # dense weights for feature functions
>
> [weight]
>
> # The default weights are NOT optimized for translation quality. You MUST
> tune the weights.
>
> # Documentation for tuning is here:
> http://www.statmt.org/moses/?n=FactoredTraining.Tuning
>
> UnknownWordPenalty0= 1
>
> WordPenalty0= -1
>
> PhrasePenalty0= 0.2
>
> TranslationModel0= 0.2 0.2 0.2 0.2
>
> LexicalReordering0= 0.3 0.3 0.3 0.3 0.3 0.3
>
> Distortion0= 0.3
>
> LM0= 0.5
>
>
>
> *From:* Hieu Hoang [mailto:hieuhoang@gmail.com]
> *Sent:* Thursday, October 22, 2015 12:55 PM
> *To:* Tomasz Gawryl
> *Cc:* moses-support
> *Subject:* Re: [Moses-support] factored tuning time
>
>
>
> can you show me the moses.ini file it creates. It's usually
>
> model/moses.ini.?
>
> How big is your tuning set? ANd your test set? What iteration is the
> tuning on at the moment? You can find that by looking in
>
> tuning/tmp.?
>
>
> Hieu Hoang
> http://www.hoang.co.uk/hieu
>
>
>
> On 22 October 2015 at 11:50, Tomasz Gawryl <tomasz.gawryl@skrivanek.pl>
> wrote:
>
> Hi Hieu,
>
>
>
> Here is my factored config.
>
> Regards,
>
> TG
>
>
>
> ################################################
>
> ### CONFIGURATION FILE FOR AN SMT EXPERIMENT ###
>
> ################################################
>
>
>
> [GENERAL]
>
>
>
> home-dir = /home/moses
>
> data-dir = $home-dir/corpus
>
> train-dir = $data-dir/training
>
> dev-dir = $data-dir/dev
>
>
>
> ### directory in which experiment is run
>
> #
>
> working-dir = $home-dir/working/experiments/FACTORED
>
>
>
> # specification of the language pair
>
> input-extension = en
>
> output-extension = pl
>
> pair-extension = en-pl
>
>
>
> ### directories that contain tools and data
>
> #
>
> # moses
>
> moses-src-dir = $home-dir/src/mosesdecoder
>
> #
>
> # moses binaries
>
> moses-bin-dir = $moses-src-dir/bin
>
> #
>
> # moses scripts
>
> moses-script-dir = $moses-src-dir/scripts
>
> #
>
> # directory where GIZA++/MGIZA programs resides
>
> external-bin-dir = $moses-src-dir/tools
>
> #
>
> # srilm
>
> srilm-dir = $home-dir/src/srilm-1.7.0-lite/bin/i686-m64
>
> #
>
> # irstlm
>
> irstlm-dir = $home-dir/src/irstlm-5.80.08/trunk/bin
>
> #
>
> # randlm
>
> #randlm-dir = $moses-src-dir/randlm/bin
>
> #
>
> # data
>
> #wmt12-data = $working-dir/data
>
>
>
> ### basic tools
>
> #
>
> # moses decoder
>
> decoder = $moses-bin-dir/moses
>
>
>
> # conversion of rule table into binary on-disk format
>
> ttable-binarizer = "$moses-bin-dir/CreateOnDiskPt 1 2 4 100 2"
>
>
>
> # tokenizers - comment out if all your data is already tokenized
>
> input-tokenizer = "$moses-script-dir/tokenizer/tokenizer.perl -threads 4
> -a -l $input-extension"
>
> output-tokenizer = "$moses-script-dir/tokenizer/tokenizer.perl -threads 4
> -a -l $output-extension"
>
>
>
> # truecasers - comment out if you do not use the truecaser
>
> input-truecaser = $moses-script-dir/recaser/truecase.perl
>
> output-truecaser = $moses-script-dir/recaser/truecase.perl
>
> detruecaser = $moses-script-dir/recaser/detruecase.perl
>
>
>
> # lowercaser - comment out if you use truecasing
>
> #input-lowercaser = $moses-script-dir/tokenizer/lowercase.perl
>
> #output-lowercaser = $moses-script-dir/tokenizer/lowercase.perl
>
>
>
> ### generic parallelizer for cluster and multi-core machines
>
> # you may specify a script that allows the parallel execution
>
> # parallizable steps (see meta file). you also need specify
>
> # the number of jobs (cluster) or cores (multicore)
>
> #
>
> #generic-parallelizer =
> $moses-script-dir/ems/support/generic-parallelizer.perl
>
> generic-parallelizer =
> $moses-script-dir/ems/support/generic-multicore-parallelizer.perl
>
>
>
> ### cluster settings (if run on a cluster machine)
>
> # number of jobs to be submitted in parallel
>
> #
>
> #jobs = 10
>
>
>
> # arguments to qsub when scheduling a job
>
> #qsub-settings = ""
>
>
>
> # project for priviledges and usage accounting
>
> #qsub-project = iccs_smt
>
>
>
> # memory and time
>
> #qsub-memory = 4
>
> #qsub-hours = 48
>
>
>
> ### multi-core settings
>
> # when the generic parallelizer is used, the number of cores
>
> # specified here
>
> cores = 8
>
>
>
> #################################################################
>
> # PARALLEL CORPUS PREPARATION:
>
> # create a tokenized, sentence-aligned corpus, ready for training
>
>
>
> [CORPUS]
>
>
>
> ### long sentences are filtered out, since they slow down GIZA++
>
> # and are a less reliable source of data. set here the maximum
>
> # length of a sentence
>
> #
>
> max-sentence-length = 100
>
>
>
> [CORPUS:europarl] IGNORE
>
>
>
> ### command to run to get raw corpus files
>
> #
>
> # get-corpus-script =
>
>
>
> ### raw corpus files (untokenized, but sentence aligned)
>
> #
>
> #raw-stem = $train-dir/corpus.skropus.nmk.$pair-extension
>
>
>
> ### tokenized corpus files (may contain long sentences)
>
> #
>
> #tokenized-stem =
>
>
>
> ### if sentence filtering should be skipped,
>
> # point to the clean training data
>
> #
>
> #clean-stem =
>
>
>
> ### if corpus preparation should be skipped,
>
> # point to the prepared training data
>
> #
>
> #lowercased-stem =
>
>
>
> [CORPUS:ACROSS]
>
> raw-stem = $train-dir/across.$pair-extension
>
>
>
> [CORPUS:un] IGNORE
>
> raw-stem = $wmt12-data/training/undoc.2000.$pair-extension
>
>
>
> #################################################################
>
> # LANGUAGE MODEL TRAINING
>
>
>
> [LM]
>
>
>
> ### tool to be used for language model training
>
> # kenlm training
>
> lm-training = "$moses-script-dir/ems/support/lmplz-wrapper.perl -bin
> $moses-bin-dir/lmplz"
>
> settings = "--prune '0 0 1' -T $working-dir/lm -S 20%"
>
>
>
> # srilm
>
> #lm-training = $srilm-dir/ngram-count
>
> #settings = "-'interpolate -kndiscount -unk"
>
>
>
> # irstlm training
>
> # msb = modified kneser ney; p=0 no singleton pruning
>
> #lm-training = "$moses-script-dir/generic/trainlm-irst2.perl -cores $cores
> -irst-dir $irstlm-dir -temp-dir $working-dir/tmp"
>
> #settings = "-s msb -p 0"
>
>
>
> # order of the language model
>
> order = 5
>
>
>
> ### tool to be used for training randomized language model from scratch
>
> # (more commonly, a SRILM is trained)
>
> #
>
> #rlm-training = "$randlm-dir/buildlm -falsepos 8 -values 8"
>
>
>
> ### script to use for binary table format for irstlm or kenlm
>
> # (default: no binarization)
>
>
>
> # irstlm
>
> #lm-binarizer = $irstlm-dir/compile-lm
>
>
>
> # kenlm, also set type to 8
>
> #lm-binarizer = $moses-bin-dir/build_binary
>
> #type = 8
>
>
>
> ### script to create quantized language model format (irstlm)
>
> # (default: no quantization)
>
> #
>
> #lm-quantizer = $irstlm-dir/quantize-lm
>
>
>
> ### script to use for converting into randomized table format
>
> # (default: no randomization)
>
> #
>
> #lm-randomizer = "$randlm-dir/buildlm -falsepos 8 -values 8"
>
>
>
> ### each language model to be used has its own section here
>
>
>
> [LM:europarl] IGNORE
>
>
>
> ### command to run to get raw corpus files
>
> #
>
> #get-corpus-script = ""
>
>
>
> ### raw corpus (untokenized)
>
> #
>
> #raw-corpus = $wmt12-data/training/europarl-v7.$output-extension
>
>
>
> ### tokenized corpus files (may contain long sentences)
>
> #
>
> #tokenized-corpus =
>
>
>
> ### if corpus preparation should be skipped,
>
> # point to the prepared language model
>
> #
>
> #lm =
>
>
>
> [LM:ACROSS] IGNORE
>
> raw-corpus = $train-dir/across.$pair-extension.$output-extension
>
>
>
> [LM:un] IGNORE
>
> raw-corpus =
> $wmt12-data/training/undoc.2000.$pair-extension.$output-extension
>
>
>
> [LM:news] IGNORE
>
> raw-corpus = $wmt12-data/training/news.$output-extension.shuffled
>
>
>
> [LM:ACROSS=pos]
>
> factors = "pos"
>
> order = 7
>
> #settings = "-interpolate -unk"
>
> settings = "--discount_fallback"
>
> raw-corpus = $train-dir/across.$pair-extension.$output-extension
>
>
>
> #################################################################
>
> # INTERPOLATING LANGUAGE MODELS
>
>
>
> [INTERPOLATED-LM] IGNORE
>
>
>
> # if multiple language models are used, these may be combined
>
> # by optimizing perplexity on a tuning set
>
> # see, for instance [Koehn and Schwenk, IJCNLP 2008]
>
>
>
> ### script to interpolate language models
>
> # if commented out, no interpolation is performed
>
> #
>
> script = $moses-script-dir/ems/support/interpolate-lm.perl
>
>
>
> ### tuning set
>
> # you may use the same set that is used for mert tuning (reference set)
>
> #
>
> tuning-sgm = $wmt12-data/dev/newstest2010-ref.$output-extension.sgm
>
> #raw-tuning =
>
> #tokenized-tuning =
>
> #factored-tuning =
>
> #lowercased-tuning =
>
> #split-tuning =
>
>
>
> ### group language models for hierarchical interpolation
>
> # (flat interpolation is limited to 10 language models)
>
> #group = "first,second fourth,fifth"
>
>
>
> ### script to use for binary table format for irstlm or kenlm
>
> # (default: no binarization)
>
>
>
> # irstlm
>
> #lm-binarizer = $irstlm-dir/compile-lm
>
>
>
> # kenlm, also set type to 8
>
> #lm-binarizer = $moses-bin-dir/build_binary
>
> #type = 8
>
>
>
> ### script to create quantized language model format (irstlm)
>
> # (default: no quantization)
>
> #
>
> #lm-quantizer = $irstlm-dir/quantize-lm
>
>
>
> ### script to use for converting into randomized table format
>
> # (default: no randomization)
>
> #
>
> #lm-randomizer = "$randlm-dir/buildlm -falsepos 8 -values 8"
>
>
>
> #################################################################
>
> # FACTOR DEFINITION
>
>
>
> [INPUT-FACTOR]
>
>
>
> # also used for output factors
>
> temp-dir = $working-dir/training/factor
>
>
>
> [OUTPUT-FACTOR:pos]
>
>
>
> ### script that generates this factor
>
> #
>
> mxpost = $home-dir/src/mxpost
>
> factor-script =
> "$moses-script-dir/training/wrappers/make-factor-en-pos.mxpost.perl -mxpost
> $mxpost"
>
>
>
> #################################################################
>
> # MODIFIED MOORE LEWIS FILTERING
>
>
>
> [MML] IGNORE
>
>
>
> ### specifications for language models to be trained
>
> #
>
> #lm-training = $srilm-dir/ngram-count
>
> #lm-settings = "-interpolate -kndiscount -unk"
>
> #lm-binarizer = $moses-src-dir/bin/build_binary
>
> #lm-query = $moses-src-dir/bin/query
>
> #order = 5
>
>
>
> ### in-/out-of-domain source/target corpora to train the 4 language model
>
> #
>
> # in-domain: point either to a parallel corpus
>
> #outdomain-stem = [CORPUS:toy:clean-split-stem]
>
>
>
> # ... or to two separate monolingual corpora
>
> #indomain-target = [LM:toy:lowercased-corpus]
>
> #raw-indomain-source = $toy-data/nc-5k.$input-extension
>
>
>
> # point to out-of-domain parallel corpus
>
> #outdomain-stem = [CORPUS:giga:clean-split-stem]
>
>
>
> # settings: number of lines sampled from the corpora to train each
> language model on
>
> # (if used at all, should be small as a percentage of corpus)
>
> #settings = "--line-count 100000"
>
>
>
> #################################################################
>
> # TRANSLATION MODEL TRAINING
>
>
>
> [TRAINING]
>
>
>
> ### training script to be used: either a legacy script or
>
> # current moses training script (default)
>
> #
>
> script = $moses-script-dir/training/train-model.perl
>
>
>
> ### general options
>
> # these are options that are passed on to train-model.perl, for instance
>
> # * "-mgiza -mgiza-cpus 8" to use mgiza instead of giza
>
> # * "-sort-buffer-size 8G -sort-compress gzip" to reduce on-disk sorting
>
> # * "-sort-parallel 8 -cores 8" to speed up phrase table building
>
> # * "-parallel" for parallel execution of mkcls and giza
>
> #
>
> #training-options = ""
>
> training-options = "-mgiza -mgiza-cpus 8 -cores $cores -parallel
> -sort-buffer-size 10G -sort-batch-size 253 -sort-compress gzip
> -sort-parallel 10"
>
>
>
> ### factored training: specify here which factors used
>
> # if none specified, single factor training is assumed
>
> # (one translation step, surface to surface)
>
> #
>
> input-factors = word
>
> output-factors = word pos
>
> alignment-factors = "word -> word"
>
> translation-factors = "word -> word+pos"
>
> reordering-factors = "word -> word"
>
> #generation-factors =
>
> decoding-steps = "t0"
>
>
>
> ### parallelization of data preparation step
>
> # the two directions of the data preparation can be run in parallel
>
> # comment out if not needed
>
> #
>
> parallel = yes
>
>
>
> ### pre-computation for giza++
>
> # giza++ has a more efficient data structure that needs to be
>
> # initialized with snt2cooc. if run in parallel, this may reduces
>
> # memory requirements. set here the number of parts
>
> #
>
> run-giza-in-parts = 5
>
>
>
> ### symmetrization method to obtain word alignments from giza output
>
> # (commonly used: grow-diag-final-and)
>
> #
>
> alignment-symmetrization-method = grow-diag-final-and
>
>
>
> ### use of Chris Dyer's fast align for word alignment
>
> #
>
> #fast-align-settings = "-d -o -v"
>
>
>
> ### use of berkeley aligner for word alignment
>
> #
>
> #use-berkeley = true
>
> #alignment-symmetrization-method = berkeley
>
> #berkeley-train = $moses-script-dir/ems/support/berkeley-train.sh
>
> #berkeley-process = $moses-script-dir/ems/support/berkeley-process.sh
>
> #berkeley-jar = /your/path/to/berkeleyaligner-1.1/berkeleyaligner.jar
>
> #berkeley-java-options = "-server -mx30000m -ea"
>
> #berkeley-training-options = "-Main.iters 5 5 -EMWordAligner.numThreads 8"
>
> #berkeley-process-options = "-EMWordAligner.numThreads 8"
>
> #berkeley-posterior = 0.5
>
>
>
> ### use of baseline alignment model (incremental training)
>
> #
>
> #baseline = 68
>
> #baseline-alignment-model =
> "$working-dir/training/prepared.$baseline/$input-extension.vcb \
>
> # $working-dir/training/prepared.$baseline/$output-extension.vcb \
>
> #
> $working-dir/training/giza.$baseline/${output-extension}-$input-extension.cooc
> \
>
> #
> $working-dir/training/giza-inverse.$baseline/${input-extension}-$output-extension.cooc
> \
>
> #
> $working-dir/training/giza.$baseline/${output-extension}-$input-extension.thmm.5
> \
>
> #
> $working-dir/training/giza.$baseline/${output-extension}-$input-extension.hhmm.5
> \
>
> #
> $working-dir/training/giza-inverse.$baseline/${input-extension}-$output-extension.thmm.5
> \
>
> #
> $working-dir/training/giza-inverse.$baseline/${input-extension}-$output-extension.hhmm.5"
>
>
>
> ### if word alignment should be skipped,
>
> # point to word alignment files
>
> #
>
> #word-alignment = $working-dir/model/aligned.1
>
>
>
> ### filtering some corpora with modified Moore-Lewis
>
> # specify corpora to be filtered and ratio to be kept, either before or
> after word alignment
>
> #mml-filter-corpora = toy
>
> #mml-before-wa = "-proportion 0.9"
>
> #mml-after-wa = "-proportion 0.9"
>
>
>
> ### build memory mapped suffix array phrase table
>
> # (binarizing the reordering table is a good idea, since filtering makes
> little sense)
>
> #mmsapt = "num-features=9 pfwd=g+ pbwd=g+ smooth=0 sample=1000 workers=1"
>
> binarize-all = $moses-script-dir/training/binarize-model.perl
>
>
>
>
>
> ### create a bilingual concordancer for the model
>
> #
>
> #biconcor = $moses-bin-dir/biconcor
>
>
>
> ## Operation Sequence Model (OSM)
>
> # Durrani, Schmid and Fraser. (2011):
>
> # "A Joint Sequence Translation Model with Integrated Reordering"
>
> # compile Moses with --max-kenlm-order=9 if higher order is required
>
> #
>
> #operation-sequence-model = "yes"
>
> #operation-sequence-model-order = 5
>
> #operation-sequence-model-settings = "-lmplz '$moses-src-dir/bin/lmplz -S
> 40% -T $working-dir/model/tmp'"
>
> #
>
> # if OSM training should be skipped, point to OSM Model
>
> #osm-model =
>
>
>
> ### unsupervised transliteration module
>
> # Durrani, Sajjad, Hoang and Koehn (EACL, 2014).
>
> # "Integrating an Unsupervised Transliteration Model
>
> # into Statistical Machine Translation."
>
> #
>
> #transliteration-module = "yes"
>
> #post-decoding-transliteration = "yes"
>
>
>
> ### lexicalized reordering: specify orientation type
>
> # (default: only distance-based reordering model)
>
> #
>
> lexicalized-reordering = msd-bidirectional-fe
>
>
>
> ### hierarchical rule set
>
> #
>
> #hierarchical-rule-set = true
>
>
>
> ### settings for rule extraction
>
> #
>
> #extract-settings = ""
>
> max-phrase-length = 5
>
>
>
> ### add extracted phrases from baseline model
>
> #
>
> #baseline-extract = $working-dir/model/extract.$baseline
>
> #
>
> # requires aligned parallel corpus for re-estimating lexical translation
> probabilities
>
> #baseline-corpus = $working-dir/training/corpus.$baseline
>
> #baseline-alignment =
> $working-dir/model/aligned.$baseline.$alignment-symmetrization-method
>
>
>
> ### unknown word labels (target syntax only)
>
> # enables use of unknown word labels during decoding
>
> # label file is generated during rule extraction
>
> #
>
> #use-unknown-word-labels = true
>
>
>
> ### if phrase extraction should be skipped,
>
> # point to stem for extract files
>
> #
>
> # extracted-phrases =
>
>
>
> ### settings for rule scoring
>
> #
>
> score-settings = "--GoodTuring --MinScore 2:0.0001"
>
>
>
> ### include word alignment in phrase table
>
> #
>
> #include-word-alignment-in-rules = yes
>
>
>
> ### sparse lexical features
>
> #
>
> #sparse-features = "target-word-insertion top 50, source-word-deletion top
> 50, word-translation top 50 50, phrase-length"
>
>
>
> ### domain adaptation settings
>
> # options: sparse, any of: indicator, subset, ratio
>
> #domain-features = "subset"
>
>
>
> ### if phrase table training should be skipped,
>
> # point to phrase translation table
>
> #
>
> # phrase-translation-table =
>
>
>
> ### if reordering table training should be skipped,
>
> # point to reordering table
>
> #
>
> # reordering-table =
>
>
>
> ### filtering the phrase table based on significance tests
>
> # Johnson, Martin, Foster and Kuhn. (2007): "Improving Translation Quality
> by Discarding Most of the Phrasetable"
>
> # options: -n number of translations; -l 'a+e', 'a-e', or a positive real
> value -log prob threshold
>
> #salm-index = /path/to/project/salm/Bin/Linux/Index/IndexSA.O64
>
> #sigtest-filter = "-l a+e -n 50"
>
>
>
> ### if training should be skipped,
>
> # point to a configuration file that contains
>
> # pointers to all relevant model files
>
> #
>
> #config-with-reused-weights =
>
>
>
> #####################################################
>
> ### TUNING: finding good weights for model components
>
>
>
> [TUNING]
>
>
>
> ### instead of tuning with this setting, old weights may be recycled
>
> # specify here an old configuration file with matching weights
>
> #
>
> #weight-config = $working-dir/tuning/moses.weight-reused.ini.1
>
>
>
> ### tuning script to be used
>
> #
>
> tuning-script = $moses-script-dir/training/mert-moses.pl
>
> tuning-settings = "-mertdir $moses-bin-dir -threads=$cores"
>
>
>
> ### specify the corpus used for tuning
>
> # it should contain 1000s of sentences
>
> #
>
> #input-sgm = $wmt12-data/dev/newstest2010-src.$input-extension.sgm
>
> raw-input = $dev-dir/Tatoeba.$input-extension
>
> #tokenized-input =
>
> #factorized-input =
>
> #input =
>
> #reference-sgm = $wmt12-data/dev/newstest2010-ref.$output-extension.sgm
>
> raw-reference = $dev-dir/Tatoeba.$output-extension
>
> #tokenized-reference =
>
> #factorized-reference =
>
> #reference =
>
>
>
> ### size of n-best list used (typically 100)
>
> #
>
> nbest = 100
>
>
>
> ### ranges for weights for random initialization
>
> # if not specified, the tuning script will use generic ranges
>
> # it is not clear, if this matters
>
> #
>
> # lambda =
>
>
>
> ### additional flags for the filter script
>
> #
>
> filter-settings = ""
>
>
>
> ### additional flags for the decoder
>
> #
>
> decoder-settings = "-threads $cores"
>
>
>
> ### if tuning should be skipped, specify this here
>
> # and also point to a configuration file that contains
>
> # pointers to all relevant model files
>
> #
>
> #config-with-reused-weights =
>
>
>
> #########################################################
>
> ## RECASER: restore case, this part only trains the model
>
>
>
> [RECASING] IGNORE
>
>
>
> ### training data
>
> # raw input needs to be still tokenized,
>
> # also also tokenized input may be specified
>
> #
>
> #tokenized = [LM:europarl:tokenized-corpus]
>
>
>
> ### additinal settings
>
> #
>
> recasing-settings = ""
>
> #lm-training = $srilm-dir/ngram-count
>
> decoder = $moses-bin-dir/moses
>
>
>
> # already a trained recaser? point to config file
>
> #recase-config =
>
>
>
> #######################################################
>
> ## TRUECASER: train model to truecase corpora and input
>
>
>
> [TRUECASER]
>
>
>
> ### script to train truecaser models
>
> #
>
> trainer = $moses-script-dir/recaser/train-truecaser.perl
>
>
>
> ### training data
>
> # data on which truecaser is trained
>
> # if no training data is specified, parallel corpus is used
>
> #
>
> # raw-stem =
>
> # tokenized-stem =
>
>
>
> ### trained model
>
> #
>
> # truecase-model =
>
>
>
> ######################################################################
>
> ## EVALUATION: translating a test set using the tuned system and score it
>
>
>
> [EVALUATION]
>
>
>
> ### number of jobs (if parallel execution on cluster)
>
> #
>
> #jobs = 10
>
>
>
> ### additional flags for the filter script
>
> #
>
> #filter-settings = ""
>
>
>
> ### additional decoder settings
>
> # switches for the Moses decoder
>
> # common choices:
>
> # "-threads N" for multi-threading
>
> # "-mbr" for MBR decoding
>
> # "-drop-unknown" for dropping unknown source words
>
> # "-search-algorithm 1 -cube-pruning-pop-limit 5000 -s 5000" for cube
> pruning
>
> #
>
> decoder-settings = "-search-algorithm 1 -cube-pruning-pop-limit 5000 -s
> 5000 -threads $cores"
>
>
>
> ### specify size of n-best list, if produced
>
> #
>
> #nbest = 100
>
>
>
> ### multiple reference translations
>
> #
>
> #multiref = yes
>
>
>
> ### prepare system output for scoring
>
> # this may include detokenization and wrapping output in sgm
>
> # (needed for nist-bleu, ter, meteor)
>
> #
>
> detokenizer = "$moses-script-dir/tokenizer/detokenizer.perl -l
> $output-extension"
>
> #recaser = $moses-script-dir/recaser/recase.perl
>
> wrapping-script = "$moses-script-dir/ems/support/wrap-xml.perl
> $output-extension"
>
> #output-sgm =
>
>
>
> ### BLEU
>
> #
>
> nist-bleu = $moses-script-dir/generic/mteval-v13a.pl
>
> nist-bleu-c = "$moses-script-dir/generic/mteval-v13a.pl -c"
>
> #multi-bleu = "$moses-script-dir/generic/multi-bleu.perl -lc"
>
> #multi-bleu-c = $moses-script-dir/generic/multi-bleu.perl
>
> #ibm-bleu =
>
>
>
> ### TER: translation error rate (BBN metric) based on edit distance
>
> # not yet integrated
>
> #
>
> # ter =
>
>
>
> ### METEOR: gives credit to stem / worknet synonym matches
>
> # not yet integrated
>
> #
>
> # meteor =
>
>
>
> ### Analysis: carry out various forms of analysis on the output
>
> #
>
> analysis = $moses-script-dir/ems/support/analysis.perl
>
> #
>
> # also report on input coverage
>
> analyze-coverage = yes
>
> #
>
> # also report on phrase mappings used
>
> report-segmentation = yes
>
> #
>
> # report precision of translations for each input word, broken down by
>
> # count of input word in corpus and model
>
> #report-precision-by-coverage = yes
>
> #
>
> # further precision breakdown by factor
>
> #precision-by-coverage-factor = pos
>
> #
>
> # visualization of the search graph in tree-based models
>
> #analyze-search-graph = yes
>
>
>
> [EVALUATION:newstest2011] IGNORE
>
>
>
> ### input data
>
> #
>
> input-sgm = $wmt12-data/dev/newstest2011-src.$input-extension.sgm
>
> # raw-input =
>
> # tokenized-input =
>
> # factorized-input =
>
> # input =
>
>
>
> ### reference data
>
> #
>
> reference-sgm = $wmt12-data/dev/newstest2011-ref.$output-extension.sgm
>
> # raw-reference =
>
> # tokenized-reference =
>
> # reference =
>
>
>
> ### analysis settings
>
> # may contain any of the general evaluation analysis settings
>
> # specific setting: base coverage statistics on earlier run
>
> #
>
> #precision-by-coverage-base = $working-dir/evaluation/test.analysis.5
>
>
>
> ### wrapping frame
>
> # for nist-bleu and other scoring scripts, the output needs to be wrapped
>
> # in sgm markup (typically like the input sgm)
>
> #
>
> wrapping-frame = $input-sgm
>
>
>
>
>
> [EVALUATION:carlsberg]
>
> raw-input = $dev-dir/Carlsberg.en
>
> raw-reference = $dev-dir/Carlsberg.pl
>
>
>
> [EVALUATION:TNS_TEKST]
>
> raw-input = $dev-dir/TLUMACZE_NA_START2015/tekst.nmk.$input-extension
>
> raw-reference = $dev-dir/TLUMACZE_NA_START2015/tekst.nmk.$output-extension
>
>
>
> [EVALUATION:TNS_ETAP1]
>
> raw-input = $dev-dir/TLUMACZE_NA_START2015/etap1.nmk.$input-extension
>
> raw-reference = $dev-dir/TLUMACZE_NA_START2015/etap1.nmk.$output-extension
>
>
>
>
>
> ##########################################
>
> ### REPORTING: summarize evaluation scores
>
>
>
> [REPORTING]
>
>
>
> ### currently no parameters for reporting section
>
>
>
>
>
> *From:* Hieu Hoang [mailto:hieuhoang@gmail.com]
> *Sent:* Thursday, October 22, 2015 12:22 PM
> *To:* Tomasz Gawryl
> *Cc:* moses-support
> *Subject:* Re: [Moses-support] factored tuning time
>
>
>
> Can I have a look at your moses.ini file?
>
> You should be careful trying to use complicated factored models as they
> can take a long time to run.
>
> Also, you can use multithreading to make it run faster
>
>
> Hieu Hoang
> http://www.hoang.co.uk/hieu
>
>
>
> On 22 October 2015 at 07:28, Tomasz Gawryl <tomasz.gawryl@skrivanek.pl>
> wrote:
>
> Hi,
>
>
>
> I?ve one question to you about time of factored tuning. How many times
> longer it takes compared to phrase based tuning?
>
> I?m asking because it?s 7?th day and it?s still tuning (3,3 mln corpus
> sentences). Phrase based tuning took around 3h for the same corpus.
>
> Top shows me that moses uses near 100% CPU. So the speed is the same.
>
>
>
> Regards,
>
> Tomek Gawryl
>
>
>
>
> _______________________________________________
> Moses-support mailing list
> Moses-support@mit.edu
> http://mailman.mit.edu/mailman/listinfo/moses-support
>
>
>
>
>
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://mailman.mit.edu/mailman/private/moses-support/attachments/20151022/204d566a/attachment.html
------------------------------
_______________________________________________
Moses-support mailing list
Moses-support@mit.edu
http://mailman.mit.edu/mailman/listinfo/moses-support
End of Moses-support Digest, Vol 108, Issue 67
**********************************************
Subscribe to:
Post Comments (Atom)
0 Response to "Moses-support Digest, Vol 108, Issue 67"
Post a Comment